Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier.com/locate/jmr

Communication

Selective detection of 13 CHD₂ signals from a mixture of 13 CH₃/ 13 CH₂D/ 13 CHD₂ methyl isotopomers in proteins

Xinli Liao¹, Vitali Tugarinov*

Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States

ARTICLE INFO

Article history: Received 30 October 2010 Revised 29 December 2010 Available online 4 January 2011

Keywords: Methyl isotopomer Magic angle Deuteration J evolution

ABSTRACT

In NMR spectra of partially deuterated proteins methyl correlations are commonly observed as a combination of signals from ¹³CH₃, ¹³CH₂D and ¹³CHD₂ isotopomers. In a number of NMR applications, methyl groups of the ¹³CHD₂ variety are targeted because of their AX-like character and concomitant simplification of the involved relaxation mechanisms. Although complete elimination of signals from ¹³CH₂D methyl groups can be easily achieved in such applications, if the magnetization is not transferred through deuterium nuclei, efficient suppression of usually stronger ¹³CH₃ peaks is more problematic. A pair of simple pulse-scheme elements are presented that achieve almost complete suppression of ¹³CH₃ signals in the mixtures of ¹³CH₃/¹³CH₂D/¹³CHD₂ methyl isotopomers of small proteins at the expense of a moderate (~20-to-40%) reduction in intensities of the targeted ¹³CHD₂ groups. The approaches described are based purely on scalar coupling (¹J_{CH}) evolution properties of different ¹³C and ¹H transitions within ¹³CH₃ spin-systems and are superior to magnetization transfer through deuterons with respect to sensitivity of the detected ¹³CHD₂ methyl signals.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In protein samples either generated in D₂O media using protonated ¹³C-labeled pyruvate as carbon source or obtained from ¹³Cenriched glucose in a mixture of H₂O and D₂O solvents, methyl groups of ¹³CH₃, ¹³CH₂D, ¹³CHD₂ and ¹³CD₃ variety are produced [1–7]. Due to isotope shifts, the first three of this set of methyl isotopomers resonate at slightly different ¹H and ¹³C frequencies degrading resolution in two-dimensional ¹H-¹³C correlation spectra. In a variety of NMR applications, ¹³CHD₂ methyl isotopomers are targeted because ¹³C relaxation in this isotopomer is amenable to straightforward interpretation [4,6,8-11]. Although complete elimination of signals from ¹³CH₂D methyl groups can be easily achieved in applications that focus on isotopomers of ¹³CHD₂ variety, if no magnetization transfer through deuterons is involved, efficient suppression of usually stronger ¹³CH₃ peaks is significantly more problematic due to differential relaxation of the outer and inner components of the ¹³C quartet in HSQC [12]-type magnetization transfer schemes [13–16] and the same parity of ¹³CH₃ and ¹³CHD₂ groups with respect to the number of ¹H spins.

Usually, purging elements are introduced into NMR pulseschemes that dephase the magnetization terms of ¹³CH₃ spins-systems containing ¹H spins [4,7,9]. Even in small proteins such purging of ¹³CH₃ magnetization is only partially effective [7,9]. In larger molecules, where cross-correlated relaxation rates between ¹³C-H dipoles within ¹³CH₃ methyl groups are faster, it achieves only marginal reduction in ¹³CH₃ signal intensities. Obviously, 'clean' ¹³CHD₂ detection can be achieved by the transfer of magnetization through ²H spins. However, the associated sensitivity losses of ¹³CHD₂ signals (\geq 50%) make this approach unattractive for applications that do not focus on ²H relaxation measurements. To alleviate this problem, Ishima, Torchia and co-workers have introduced an optimized methyl labeling scheme that increases the content of ¹³CHD₂ isotopomers and reduces that of ¹³CH₃ methyls through the use of partially deuterated pyruvate and α keto-butyrate for protein production [17].

We describe a pair of pulse-scheme elements that significantly improve the suppression of 13 CH₃ signals in the mixtures of 13 CH₂D/ 13 CH₂D/ 13 CHD₂ methyl isotopomers of small (<~15 kDa) proteins at the expense of a moderate (~20-to-40%) reduction in intensities of the (targeted) 13 CHD₂ methyls. Since the described approach is based purely on the properties of scalar coupling (1 J_{CH}) evolution of different transitions within the 13 CH₃ spin-system, it is only slightly more tolerant to the effects of 13 C-1^H/ 13 C-1^H dipole–dipole cross-correlated relaxation, and is not effective in larger proteins. Nevertheless, 'chemical' labeling of 13 CHD₂ methyl groups via the use of 13 CHD₂-methyl-labeled

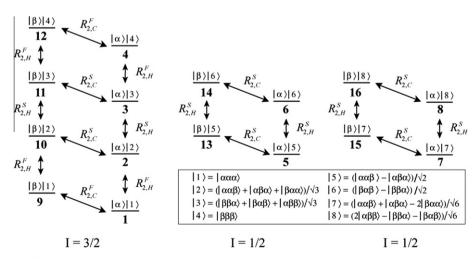
^{*} Corresponding author. Address: Biomolecular Sci. Bldg./CBSO, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States. Fax: +1 301 3140386.

E-mail address: vitali@umd.edu (V. Tugarinov).

X.L. is on leave from the Department of Chemistry, Xiamen University, China.

biosynthetic precursors is much preferred for large proteins because the content of ¹³CHD₂ methyl labels is then close to 100% eliminating signal-to-noise/resolution losses associated with generation of isotopomers of other types [18–22].

2. Results and discussion


Improved suppression of ¹³CH₃ signals for selective detection of ¹³CHD₂ methyl isotopomers. Fig. 1 shows the HSQC pulse-scheme that can be used for selective detection of ¹³CHD₂ methyl isotopomers [4]. The pulse-scheme elements for ¹³C $R_{1\rho}$, R_1 and CPMG measurements in ¹³CHD₂ groups can be inserted at the position indicated with the dashed rectangle. If 'purging' of ¹³CH₃ groups is employed [4,7,9], the dashed 90° ¹H pulse is applied in the element enclosed in the solid box in Fig. 1, with the delay 2ζ adjusted to $0.5/I_{JCH}$ (4.0 ms for $^{1}J_{CH}$ = 125 Hz). Then, in the absence of dipole–dipole cross-correlated relaxation, the only ¹³CH₃ methyl magnetization terms that are created after the period 2ζ are of the $4C_xH_z^iH_z^j$ type, where *i* and *j* denote any two of the three ¹H spins (*i*, *j* = 1,2,3; *i* ≠ *j*). These magnetization terms are purged by the dashed 90° ¹H pulse and subsequently de-phased by the gradi-

ent g5. In the presence of cross-correlated relaxation between the ${}^{13}C{}^{-1}H$ dipoles of the methyl group that leads to different relaxation rates of the outer and inner lines of the ${}^{13}C$ 3:1:1:3 quartet [13–16,23,24], the terms that are in-phase with respect to ${}^{1}H$ spins, C_x , will be created. These terms are immune to the ${}^{1}H$ purging pulse. Subsequently, after the delay 2 Δ following the t_1 evolution period (Fig. 1), these terms will evolve into the magnetization of the type $8C_xH_z^iH_z^iH_z^k$ (*i*, *j*, *k* = 1,2,3; $i \neq j \neq k$) that will cross-relax with the terms $2C_xH_z^i$ (*i* = 1, 2, 3) which will in turn evolve into observable magnetization in the end of the pulse-scheme.

Significantly improved suppression of ¹³CH₃ signals is achieved when the purging 90° ¹H pulse (dashed in the solid box in Fig. 1) is not applied, and the delay 2 ζ is adjusted to such a value that the evolution angle of the inner components of the methyl quartet, $2\pi J\zeta$, is equal to magic angle (54.7°; $J \equiv {}^{1}J_{CH}$ is the one-bond ¹H-¹³C coupling in a methyl group). Fig. 2 shows the energy level diagram of a ¹³CH₃ spin-system where all the energy levels are numbered 1 through 16. It is straightforward to show that in the absence of relaxation, each of the outer transitions, ρ , of the methyl 3:1:1:3 quartet contributes to the final observable ¹H magnetization as follows [13,23–25]:

Fig. 1. The pulse-scheme for recording 2D single-quantum ¹³CHD₂ methyl ¹H⁻¹³C correlation maps with suppression of signals from ¹³CH₃ and ¹³CH₂D methyl isotopomers. All narrow (wide) rectangular pulses were applied with the flip angles of 90° (180°) along the *x*-axis unless indicated otherwise. The ¹H(²H; ¹³C) carriers are positioned at 0.8 (0.8; 22) ppm. All ¹H, ²H and ¹³C pulses are applied with maximum possible power. ²H and ¹³C WALTZ-16 decoupling [34] is applied with 0.9 and 2.5 kHz field strengths, respectively. Delays are: $\tau_a = \Delta = 2.0 \text{ ms} (0.25/¹J_{CH} \text{ for } ^{1}J_{CH} = 125 \text{ Hz})$; $\zeta = 1.20 \text{ ms}$ (see text for details). The ¹H 90° pulse shown with the dashed line is used only when purging of ¹³CH₃ methyl signals is employed. Then, the delay ζ is adjusted to 2.0 ms. The phase-cycle is: $\varphi 1 = x, -x; \varphi 2 = x, -x, y, -y; \varphi 3 = y$; rec. = *x*, *-x*, *-x*, *x*. Quadrature detection in t_1 is achieved via the States-TPPI [35] incrementation of phase φ 3. Durations and strengths of pulsed-field gradients in units of (ms;Gauss/cm) are: g1 = (1;15); g2 = (0.3;5); g3 = (1.2;12); g4 = (0.3;8); g5 = (1.0;15); g6 = (0.8;10); g7 = (0.6;12); g8 = (0.4;8).

Fig. 2. Energy level diagram of a 13 CH₃ spin system. Eigenfunctions corresponding to each of the three manifolds (one with the total spin number I = 3/2 and two with I = 1/2) are denoted by |i>|j> where i and j refer to the 13 C and 1 H spin states, respectively. Vertical lines correspond to 1 H single-quantum (SQ) transitions; diagonal lines denote 13 C SQ transitions. $R_{2,H}^{\xi}$ and $R_{2,L}^{S}R_{2,C}^{\xi}$ denote the relaxation rates of slow and fast-relaxing 1 H transitions, respectively, while $R_{2,C}^{\xi}$ and $R_{2,C}^{S}$ are the respective relaxation rates of 13 C SQ transitions.

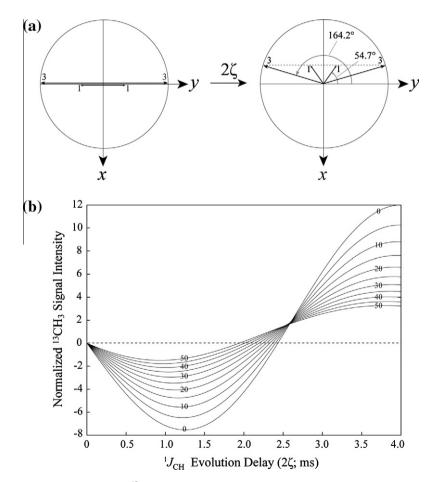
$$\rho_{1 \leftrightarrow 9} \rho_{4 \leftrightarrow 12} \to (9/2) \sin(6\pi J\zeta) \sin(6\pi J\Delta) M_H^{tr} \tag{1}$$

where M_H^{tr} is the transverse ¹H magnetization of ¹³CH groups detected in the end of the pulse-scheme, and all the other delays are as shown in Fig. 1; while the contribution of each of the inner ¹³C transitions is given by,

$$\rho_{2 \leftrightarrow 10} \rho_{3 \leftrightarrow 11} \rho_{6 \leftrightarrow 14} \rho_{7 \leftrightarrow 15} \rho_{8 \leftrightarrow 16} \rightarrow (1/2) \sin(2\pi J \zeta) \sin(2\pi J \Delta) M_H^{tr}$$
(2)

For efficient elimination of ¹³CH₃ signals upon excitation of ¹H transitions later in the scheme, the *J* evolution should proceed until each of the outer transitions ($\rho_{1\rightarrow9}\rho_{4\rightarrow12}$) is opposite to the sum of the three inner transitions (one deriving from the manifold *I* = 3/2, e.g. $\rho_{2\rightarrow10}$, and two from the manifolds *I* = 1/2, e.g. $\rho_{15\rightarrow13}\rho_{7\rightarrow15}$; see Fig. 2) thus leading to cancellation of the total ¹³CH₃ magnetization in the end of the pulse-scheme:

$$(9/2)\sin(6\pi J\zeta)\sin(6\pi J\Delta) = -3(1/2)\sin(2\pi J\zeta)\sin(6\pi J\Delta)$$
(3)

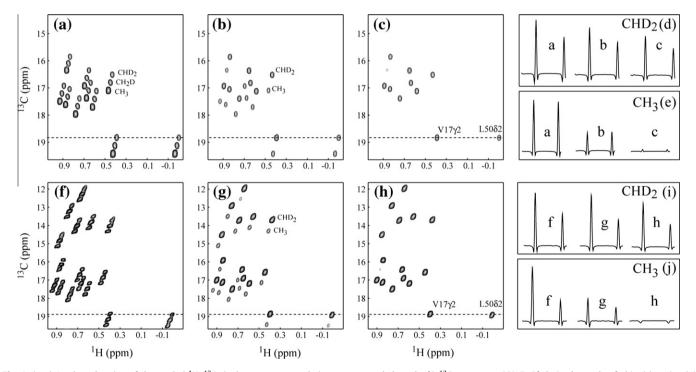

Solution of Eq. (3) for ζ with Δ fixed at 1/(4J) leads to the evolution angle $2\pi J\zeta$ equal to 0.9553 rad. (54.7356°), and the corresponding delay $2\zeta = 2.43$ ms for J = 125 Hz. The portion of the detected ¹³CHD₂ signal is then given by sin($2\pi J\zeta$) that for J = 125 Hz and $\zeta = 2.43$ ms is 0.815 translating into the loss of ¹³CHD₂ intensity of 19% in the absence of relaxation.

It was realized much earlier that the use of magic angle pulses in DEPT [26] or analogously tuned delays in INEPT [27] pulseschemes partially corrects for phase and intensity distortions [28] as well as eliminates the undesirable components of the signal that would interfere with ¹³C relaxation time measurements in ¹³CH₃ groups [29]. Here, the 'magic angle evolution' is used to achieve a null in excitation of methyl ¹H magnetization in contrast to previous applications where the same evolution delay has been used to 'equilibrate' the contributions of different ¹³C transitions to the observed methyl ¹H magnetization for the purpose of reliable ¹³C R_2 relaxation rate measurements [14,30]. Fig. 3a shows a vector diagram illustrating the evolution of the outer ('3') and inner ('1') components of a ¹³CH₃ methyl during the de-phasing period 2 ζ . After the first ¹³C_x 90° pulse in the scheme of Fig. 1, the four magnetization components of ¹³CH₃ methyl groups are present in the 3:1:1:3 ratios. The outer lines of the quartet evolve to subtend an angle of 54.73° with respect to the *y*-axis after the time period 2 ζ , while the two inner lines evolve to form an angle of $3 \times 54.73^\circ = 164.2^\circ$. Thus, after the period 2 ζ , the projections of both components on the *x*-axis are equalized (Fig. 3a).

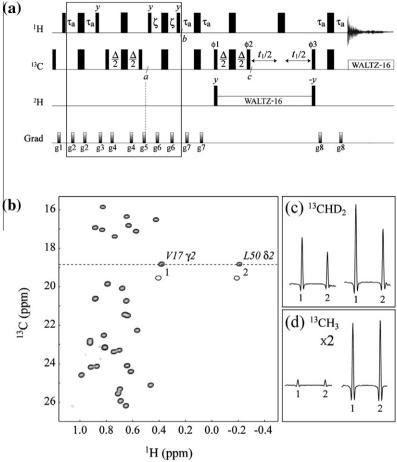
The treatment above is valid only in the absence of relaxation. The outer and inner lines of the ¹³C quartet decay at very different rates [13–16,23]. Differential relaxation effects in ¹³CH₃ groups can be approximately accounted for assuming that each of the lines of the triplet relaxes exponentially leading to the following modulation for the resulting ¹³CH₃ signal,

$$S_{\text{CH}_3} = \left[3\sin(2\pi J\zeta)\exp(-R_{2,C}^{\text{S}}\tau) - 9\sin(6\pi J\zeta)\exp(-R_{2,C}^{\text{F}}\tau)\right]M_{H}^{tr} \quad (4)$$

where spin–spin relaxation of methyl protons during delays τ_a is neglected, $\tau = 2\zeta + 2\Delta + t_1 + T$, and *T* accounts for any additional delay(s) associated with relaxation measurements (Fig. 1); the relaxation rates $R_{2,C}^F, R_{2,C}^S$ of individual transitions are as shown in Fig. 2. In


Fig. 3. (a) A vector diagram illustrating the evolution of the ¹³CH₃ methyl transverse magnetization components during the de-phasing period 2 ζ . (b) A plot showing normalized signal intensity of ¹³CH₃ groups as a function of the *J* evolution delay 2 ζ (ms) for $R_{2,C}^5$ rates in the range from 0 to 50 s⁻¹. The plots are calculated using Eq. (4) for $\tau = 2\zeta + 2\Delta$ ($t_1 = 0$; Fig. 1) and assuming $R_{2,C}^F/R_{2,C}^S = 5$. The horizontal dashed line is drawn at the null of the ¹³CH₃ signal.

the case of constant-time (CT) HSQC experiments [31] τ is equal to $2\zeta + T_{\rm C}$, where $T_{\rm C}$ is the CT period. If only dipolar ${}^{13}{\rm C}{}^{-1}{\rm H}$ contributions are considered, $R_{2,C}^{F}/R_{2,C}^{S}$ [13,23]. However, if dipolar contributions due to external ¹H/²H spins and methyl ¹³C CSA relaxation are included, the ratio $R_{2,C}^{F}/R_{2,C}^{S}$ is calculated to amount to ~5. Fig. 3b shows normalized signal intensity of ¹³CH₃ groups (in units of M_{μ}^{tr}) as a function of the J evolution delay 2 ζ for $R_{2,C}^{S}$ rates in the range from 0 to 50 s⁻¹, calculated according to Eq. (4) for the first point in the F1 dimension ($t_1 = 0$; $\tau = 2\zeta + 2\Delta$; Fig. 1) and assuming R_{2C}^{F}/R_{2C}^{S} = 5. It is clear from Fig. 3b that a slight reduction of the delay 2ζ will lead to a better suppression of ¹³CH₃ signals in the presence of relaxation. Note that because of the differential relaxation of the four components of the quartet during the t_1 evolution period. each t_1 increment would correspond to a slightly different null of the ¹³CH₃ signal (Fig. 3b). Empirically, for the $t_{1,max}$ = 38 ms used here at both temperatures, the best suppression of ¹³CH₃ signals has been achieved on average when the delay 2ζ has been adjusted to a value 2%(5%) smaller in [3-¹³C₁-pyruvate; 99% D₂O]-derived ubiquitin at 27 °C(5 °C) than the value of 2ζ in the absence of relaxation calculated above.


Improved suppression of 13 CH₃ methyl signals has been achieved using the 13 CH₃ 'magic angle evolution' delay in [3- 13 C₁-pyruvate; 99% D₂O]-derived ubiquitin at 27(5) °C at the expense of on average 19(21)% reduction in signal intensity of 13 CHD₂ methyls relative to the experiment with 13 CH₃ methyl purging. The

[3-13C1-pyruvate; 99% D2O]-derived sample represents an especially unfavorable case with respect to ¹³CH₃ signal suppression because the initial average ¹³CH₃/¹³CHD₂ intensity ratio observed in the ²H-decoupled HSQC data set is 3.7(2.5) at $27 \circ C(5 \circ C)$. Fig. 4a-c show a selected region of the methyl ¹H-¹³C single-quantum correlation maps recorded on the $[3-{}^{13}C_1$ -pyruvate; 99% $D_2O]$ derived sample of ubiquitin (27 °C) using ¹H-¹³C HSQC with ²H decoupling (Fig. 4a), the pulse-scheme that purges ¹³CH₃ methyl signals (Fig. 4b), and the experiment of Fig. 1 with the delay 2ζ adjusted to 2.38 ms and no purging ¹H pulse applied (Fig. 4c). Comparisons of 1D slices drawn from the row of the 2D data sets shown with the dashed line in Fig. 4a-c at the ¹³C chemical shift of ¹³CHD₂ isotopomers of Val¹⁷ γ 2 and Leu⁵⁰ δ 2 methyls, are shown in Fig. 4d and e. The average ¹³CH₃/¹³CHD₂ peak intensity ratios obtained using 'magic angle evolution' are $0.08 \pm 0.06(0.15 \pm 0.12)$ at $27 \circ C(5 \circ C)$ and compare well with the values of $0.61 \pm 0.14(0.68 \pm 0.18)$ at 27 °C(5 °C) obtained with purging of ¹³CH₃ magnetization. Of note, although complete suppression of ¹³CH₃ groups is achieved when the magnetization is filtered through ²H nuclei, the average fraction of ¹³CHD₂ intensity observed is only 0.38(0.34) at 27 °C(5 °C).

Fig. 4f-h show a selected region of the methyl ${}^{1}H{-}{}^{13}C$ correlation maps recorded using the constant-time (CT) versions of the same set of pulse-schemes as in Fig. 4a-c recorded on the [U- ${}^{13}C$ -glucose; 65% D₂O/35% H₂O]-derived ubiquitin. In this case,

Fig. 4. (a-c) A selected region of the methyl ¹H-¹³C single-quantum correlation maps recorded on the [3-¹³C₁-pyruvate; 99% D₂O]-derived sample of ubiquitin using (a) ¹H-¹³C HSQC pulse-scheme with ²H decoupling; (b) the HSQC-based pulse-scheme that purges ¹³CH₃ methyl signals (with the dashed ¹H 90° pulse included and the delay 2 ζ adjusted to 4 ms in the scheme of Fig. 1); (c) the pulse-scheme of Fig. 1 (without the dashed ¹H 90° pulse and the delay 2 ζ adjusted to 2.4 ms). Exactly the same acquisition parameters have been used for all data sets (see below). The plots in a-c and f-h are drawn at the same contour levels. (d) A comparison of 1D slices drawn from the row of the 2D data sets shown with the dashed line in panels a-c at the ¹³C chemical shift of ¹³CH₂ isotopomers of Val¹⁷ γ 2 and Leu⁵⁰ δ 2 methyl groups. (e) A comparison of the 1D slices drawn from the row of the 2D map corresponding to positions of ¹³CH₃ signals of Val¹⁷ γ 2 and Leu⁵⁰ δ 2 methyl groups. (e) A comparison of 1C (T) ¹H-¹³C single-quantum correlation maps recorded on the [U-¹³C-glucose; 65% D₂O/35% H₂O]-derived ubiquitin using (f) ¹H-¹³C C T-HSQC; (g) CT-HSQC-based pulse-scheme of Fig. 1. The CT period of 1/¹J_{CH} = 28 ms was used in all experiments. (i) A comparison of 1D slices drawn from the rows of the 2D data sets shown with dashed lines in (f-h) at the ¹³C chemical shift of ¹³CH₂ isotopomers of Val¹⁷ γ 2 and Leu⁵⁰ δ 2 in panels (f-h). All experiments were performed on a 600 MHz Bruker Avance III spectrometer equipped with a room temperature triple-resonance probe. Both the [3-¹³C₁-pyruvate; 99% D₂O]-derived and [U-¹³C-glucose; 65% D₂O/35% H₂O]-derived samples of wild-type human ubiquitin were dissolved in a 20 mM 99.9% D₂O sodium phosphate buffer (uncorrected pH reading of 6.8) conducts; 65% D₂O/35% H₂O]-derived samples of wild-type human ubiquitin were dissolved in a 20 mM 99.9% D₂O sodium phosphate buffer (uncorrected pH reading of

Fig. 5. (a) The pulse-scheme for recording 2D multiple-quantum ¹³CHD₂ methyl ¹H-¹³C correlation maps with suppression of signals from ¹³CH₃ and ¹³CH₂D methyl isotopomers. All the details of the pulse-scheme are the same as in Fig. 1. The phase-cycle is: $\varphi 1 = x, -x$; $\varphi 2 = 2(y), 2(-y)$; $\varphi 3 = x$; rec. = x, -x. Quadrature in t_1 is achieved via the States-TPPI [35] incrementation of phase $\varphi 3$. Durations and strengths of pulsed-field gradients in units of (ms;Gauss/cm) are: g1 = (1;15); g2 = (0.3;5); g3 = (1.2;15); g4 = (0.3;8); g5 = (0.8;10); g6 = (0.3;8); g7 = (0.5;10); g8 = (0.5;8). (b) The methyl region of the ¹H-¹³C multiple-quantum correlation map recorded on the [3-¹³C₁-pyruvate; 99% D₂O]-derived ubiquitin using the pulse-scheme shown in (a) The cross-peaks of Val¹⁷ $\gamma 2$ (1) and Leu⁵⁰ $\delta 2$ (2) ¹³CHD₂ methyls are labeled, while the positions of ¹³CH₃ methyl peaks are below the contour levels of the plot and are shown with open ellipses. The data set is comprised of [512; 100] complex points in the [¹H; ¹³C] dimensions with corresponding acquisition times of [64 ms; 48 ms]. A recovery delay of 2 s along with 8 scans/FID resulted in the net acquisition time of ~1 hr/experiment. (c) A comparison of the 1D slice drawn from the row of the 2D map shown with the dashed line (left) with the 1D slice from the 2D HSQC experiment recorded with purging of ¹³CH₃ signals (right). Both slices feature ¹³CH₂ isotopomers of Val¹⁷ $\gamma 2$ (1) and Leu⁵⁰ $\delta 2$ (2) methyls. (d) A comparison of the 1D slice drawn from the row of the 2D map corresponding to positions of ¹³CH₃ signals (shown with open ellipses in (b); left) with the corresponding 1D slice from the 2D HSQC experiment recorded with purging of ¹³CH₃ signals (right). Both slices feature ¹³CH₃ isotopomers of Val¹⁷ $\gamma 2$ (1) and Leu⁵⁰ $\delta 2$ (2) methyls. (d) A comparison of the 1D slice drawn from the row of the 2D map corresponding to positions of ¹³CH₃ signals (shown with open ellipses

 $^{13}\text{CH}_3/^{13}\text{CHD}_2$ intensity ratio observed in the $^2\text{H-decoupled CT-HSQC}$ data set (Fig. 4f) is only 1.3 on average (27 °C), and practically complete suppression of $^{13}\text{CH}_3$ methyls can be achieved using 'magic angle evolution' filtering. A comparison of 1D slices drawn from the rows of the 2D data sets shown with dashed lines in (f-h) at the ^{13}C chemical shift of $^{13}\text{CHD}_2$ isotopomers of Val¹⁷ $\gamma 2$ and Leu⁵⁰ $\delta 2$ methyls are illustrated in Fig. 4i-j.

It is noteworthy that in any scheme that is based on scalar coupling $({}^{1}J_{CH})$ evolution of different ${}^{13}C$ and ${}^{1}H$ transitions within ${}^{13}CH_3$ spin-systems, it is not possible to completely suppress all ${}^{13}CH_3$ signals because of (i) variations in the values of methyl ${}^{1}J_{CH}$ couplings, and (ii) variation in relaxation properties of different methyls. Moreover, the purely ${}^{1}J_{CH}$ evolution-based filtering described here is applicable and effective only in the limit when delays in the pulse-scheme (including the t_1 evolution period) are short compared to $(R_{2,C}^{F})^{-1}$. For example, although the 'magic angle'-based filtering is more effective than purging of ${}^{13}CH_3$ in terms of obtained ${}^{13}CH_3/{}^{13}CHD_2$ peak intensity ratios for any relaxation delay in the ${}^{13}C R_{1\rho}$ relaxation measurements performed on

[3-¹³C₁-pyruvate; 99% D₂O]-derived ubiquitin at 27 °C, the efficiency of ¹³CH₃ suppression deteriorates fast: from the average ¹³CH₃/¹³CHD₂ ratios of 0.08 ± 0.06 for initial relaxation delay to 0.43 ± 0.14 for the relaxation delay of 250 ms. Similarly, in an 82 kDa enzyme Malate Synthase G (isotropic correlation time $\tau_c \approx 45$ ns at 37 °C in D₂O) produced using [3-¹³C₁]-pyruvate as carbon source in 99% D₂O, the ¹³CH₃/¹³CHD₂ intensity ratio obtained after magic angle filtering is only slightly lower on average (0.74 ± 0.15) than that obtained when the ¹³CH₃ magnetization is purged (1.01 ± 0.21).

To estimate exactly how cross-correlated relaxation tolerant both 13 CH₃ suppression schemes are, we have conducted simulations of the evolution of magnetization in 13 CH₃ methyls in the presence of relaxation. Briefly, these simulations show that the 'magic angle evolution'-based scheme is somewhat more tolerant to 13 C– 1 H/ 13 C- 1 H dipole–dipole cross-correlations than the 'purging' scheme due to the fact that the *difference* in the fast- and slow-relaxing transitions of the 13 CH₃ spin-system is sought for (Eqs. (3) and (4)). We have also attempted using the 'purging' element in the end of the HSQC pulse-scheme (before the last IN-EPT magnetization transfer) where the refocusing of the purgedout multiple-quantum (MQ) ¹H terms is less likely as well as using composite 90° ¹H purging pulses. However, no significant improvement in ¹³CH₃ suppression was observed in either case indicating that the incompletely de-phased MQ ¹H magnetization is not the main determinant of the poor ¹³CH₃ suppression of the 'purging' scheme.

Other schemes for selective detection of ¹³CHD₂ methyl groups. Fig. 5a shows the multiple-quantum pulse-scheme developed for selective detection of 13 CHD₂ isotopomers. Whereas in the scheme of Fig. 1 the elimination of 13 CH₃ signals is achieved via searching for the null of carbon (¹³C) transitions, here ¹³CH₃ signals are suppressed through obtaining the null of all proton (¹H) transitions in a ¹³CH₃ spin-system (Fig. 2). The element of the pulse-scheme enclosed in a rectangular box achieves suppression of the central (slowly relaxing; labeled with $R_{2,H}^{S}$ in Fig. 2) ¹H transitions in ¹³CH₃ spin-systems and is very similar to that developed by Pervushin and Vögeli [32] for the measurement of ¹H–¹H residual dipolar couplings in methyl groups of proteins. Briefly, after a polarization state is created at time point 'a' of the scheme (after the application of gradient g5; Fig. 5a), the ¹H transitions of a ¹³CH₃ group are excited by the application of a 90°_{ν} pulse, and the ${}^{1}J_{CH}$ coupling is allowed to evolve for a time period 2ζ (corresponding to the 'magic angle evolution' delay $2\pi J\zeta = 54.7^{\circ}$). After application of another 90_{v}° ¹H pulse (time point 'b'; Fig. 5a), the contribution to the $^{13}CH_3$ signal from ¹H transitions of the two I = 1/2 manifolds is opposite in sign to the contribution from ¹H transitions of the manifold I = 1 (Fig. 2), effectively leading to a null in the excitation of the central ¹H transitions in a ¹³CH₃ group. Subsequently, the outer (fast relaxing; $R_{2,H}^{F}$ in Fig. 2) ¹H transitions of ¹³CH₃ methyls are eliminated by the MQ filter between the 90° ¹³C pulse with phase φ 1 and time point 'c' in Fig. 5a [24,33]. The magnetization of ¹³CHD₂ methyls evolving during t_1 and t_2 periods of the scheme in Fig. 5a is reduced in the absence of relaxation by a factor of $\sin(2\pi I\zeta)\cos(\pi I\Delta)$ that is equal to 0.58 for the values of the delays used in the experiment of Fig. 5a.

As it is illustrated in Fig. 5b-d, virtually complete suppression of ¹³CH₃ signals has been achieved in [3-¹³C₁-pyruvate; 99% D₂O]-derived sample ubiquitin (27 °C) using the scheme of Fig. 5a, with residual ¹³CH₃ correlations having intensities lower than those of truncation artifacts of ¹³CHD₂ peaks. However, the losses in ¹³CHD₂ peak intensities – the fraction of observed ¹³CHD₂ intensities relative to ¹³CHD₂ intensities in the HSQC spectrum with ²H decoupling varies from 0.52 to 0.60 for the subset of peaks in Fig. 5b – are substantially larger than in the experiment of Fig. 1. Furthermore, the multiple-quantum nature of the former experiment makes it unsuitable for many applications that require the presence of in-phase single-quantum magnetization before the t_1 evolution period. In addition, since the elimination of the central ¹H transitions $(R_{2,H}^{S})$ relies upon the presence of fast-relaxing ¹H coherences $(R_{2,H}^{F})$, the suppression of ¹³CH₃ signals by the scheme of Fig. 5a is quite intolerant to fast ¹H-¹H cross-correlated relaxation within ${}^{13}CH_3$ methyl groups effective during the delay 2ζ . Therefore, the scheme of Fig. 1 is preferable unless very high levels of ¹³CH₃ suppression are desired in samples of small proteins.

Acknowledgments

V.T. thanks the University of Maryland for continuous support. X.L. is on leave from the Department of Chemistry, Xiamen University, China and acknowledges the financial support of the China Scholarship Council (CSC). The authors thank Dr. Chenyun Guo (University of Maryland) for providing the $[3-^{13}C_1-pyruvate; 99\% D_2O]$ -derived and $[U-^{13}C-glucose; 65\% D_2O/35\% H_2O]$ -derived samples of human ubiquitin.

References

- M.K. Rosen, K.H. Gardner, R.C. Willis, W.E. Parris, T. Pawson, L.E. Kay, Selective methyl group protonation of perdeuterated proteins, J. Mol. Biol. 263 (1996) 627–636.
- [2] K.H. Gardner, M.K. Rosen, L.E. Kay, Global folds of highly deuterated, methyl protonated proteins by multidimensional NMR, Biochemistry 36 (1997) 1389– 1401.
- [3] K.H. Gardner, L.E. Kay, The use of ²H, ¹³C, ¹⁵N multidimensional NMR to study the structure and dynamics of proteins, Annu. Rev. Biophys. Biomol. Struct. 27 (1998) 357–406.
- [4] R. Ishima, J.M. Louis, D.A. Torchia, Transverse C-13 relaxation of CHD₂ methyl isotopomers to detect slow conformational changes of protein side chains, J. Am. Chem. Soc. 121 (1999) 11589–11590.
- [5] A.L. Lee, P.F. Flynn, A.J. Wand, Comparison of ²H and ¹³C NMR relaxation techniques for the study of protein methyl group dynamics in solution, J. Am. Chem. Soc. 121 (1999) 2891–2902.
- [6] R. Ishima, A.P. Petkova, J.M. Louis, D.A. Torchia, Comparison of methyl rotation axis order parameters derived from model-free analyses of ²H and ¹³C longitudinal and transverse relaxation rates measured in the same protein sample, J. Am. Chem. Soc. 123 (2001) 6164–6171.
- [7] A. Mittermaier, L.E. Kay, Effect of deuteration on some structural parameters of methyl groups in proteins as evaluated by residual dipolar couplings, J. Biomol. NMR 23 (2002) 35–45.
- [8] R. Ishima, J.M. Louis, D.A. Torchia, Characterization of two hydrophobic methyl clusters in HIV-1 protease by NMR spin relaxation in solution, J. Mol. Biol. 305 (2001) 515–521.
- [9] U. Brath, M. Akke, D. Yang, L.E. Kay, F.A. Mulder, Functional dynamics of human FKBP12 revealed by methyl ¹³C rotating frame relaxation dispersion NMR spectroscopy, J. Am. Chem. Soc. 128 (2006) 5718–5727.
- [10] C. Guo, V. Tugarinov, Selective ¹H-¹³C NMR spectroscopy of methyl groups in residually protonated samples of large proteins, J. Biomol. NMR 46 (2010) 127-133.
- [11] R. Otten, B. Chu, K.D. Krewulak, H.J. Vögel, F.A. Mulder, Comprehensive and cost-effective NMR spectroscopy of methyl groups in large proteins, J. Am. Chem. Soc. 132 (2010) 2952–2960.
- [12] G. Bodenhausen, J. Ruben, Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy, Chem. Phys. Lett. 69 (1980) 185–189.
- [13] V. Tugarinov, P.M. Hwang, J.E. Ollerenshaw, L.E. Kay, Cross-correlated relaxation enhanced ¹H-¹³C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes, J. Am. Chem. Soc. 125 (2003) 10420-10428.
- [14] L.E. Kay, T.E. Bull, L.K. Nicholson, C. Griesinger, H. Schwalbe, A. Bax, D.A. Torchia, The measurement of heteronuclear transverse relaxation times in AX₃ spin systems via polarization transfer techniques, J. Magn. Reson. 100 (1992) 538–558.
- [15] L.E. Kay, T.E. Bull, Heteronuclear transverse relaxation in AMX, AX₂, and AX₃ spin systems, J. Magn. Reson. 99 (1992) 615–622.
- [16] L.E. Kay, D.A. Torchia, The effects of dipolar cross-correlation on ¹³C methylcarbon T₁, T₂ and NOE measurements in macromolecules, J. Magn. Reson. 95 (1991) 536–547.
- [17] R. Ishima, J.M. Louis, D.A. Torchia, Optimized labeling of ¹³CHD₂ methyl isotopomers in perdeuterated proteins: potential advantages for ¹³C relaxation studies of methyl dynamics of larger proteins, J. Biomol. NMR 21 (2001) 167– 171.
- [18] V. Tugarinov, J.E. Ollerenshaw, L.E. Kay, Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin relaxation: an application to an 82 kDa enzyme, J. Am. Chem. Soc. 127 (2005) 8214–8225.
 [19] V. Tugarinov, L.E. Kay, Quantitative ¹³C and ²H NMR relaxation studies of the
- [19] V. Tugarinov, L.E. Kay, Quantitative ¹³C and ²H NMR relaxation studies of the 723-residue enzyme malate synthase G reveal a dynamic binding interface, Biochemistry 44 (2005) 15970–15977.
- [20] V. Tugarinov, L.E. Kay, Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins, Chembiochem 6 (2005) 1567–1577.
- [21] T.L. Religa, L.E. Kay, Optimal methyl labeling for studies of supra-molecular systems, J. Biomol. NMR 47 (2010) 163–169.
- [22] A.J. Baldwin, T.L. Religa, D.F. Hansen, G. Bouvignies, L.E. Kay, ¹³CHD₂ methyl group probes of millisecond time scale exchange in proteins by ¹H relaxation dispersion: an application to proteasome gating residue dynamics, J. Am. Chem. Soc. 132 (2010) 10992–10995.
- [23] J.E. Ollerenshaw, V. Tugarinov, L.E. Kay, Methyl TROSY: explanation and experimental verification, Magn. Reson. Chem. 41 (2003) 843–852.
- [24] D. Sheppard, R. Sprangers, V. Tugarinov, Experimental approaches for NMR studies of sidechain dynamics in high-molecular-weight proteins, Prog. Nucl. Magn. Reson. Spectrosc. 56 (2010) 1–45.
- [25] G. Kontaxis, A. Bax, Multiplet component separation for measurement of methyl ¹³C⁻¹H dipolar couplings in weakly aligned proteins, J. Biomol. NMR 20 (2001) 77–82.
- [26] D.M. Doddrell, D.T. Pegg, M.R. Bendall, Distortionless enhancement of NMR signals by polarization transfer, J. Magn. Reson. 48 (1982) 323–327.
- [27] G.A. Morris, R. Freeman, Enhancement of nuclear magnetic resonance signals by polarization transfer, J. Am. Chem. Soc. 101 (1979) 760–762.
- [28] O.W. Sorensen, R.R. Ernst, Elimination of spectral distortion in polarization transfer experiments. Improvements and comparison of techniques, J. Magn. Reson. 51 (1983) 477–489.

107

- [29] A.G. Palmer, P.E. Wright, M. Rance, Measurement of relaxation time constants for methyl groups by proton-detected heteronuclear NMR spectroscopy, Chem. Phys. Lett. 185 (1991) 41–46.
- [30] L.K. Nicholson, L.E. Kay, D.M. Baldisseri, J. Arango, P.E. Young, A. Bax, D.A. Torchia, Dynamics of methyl groups in proteins as studied by proton-detected C-13 NMR-spectroscopy – application to the leucine residues of staphylococcal nuclease, Biochemistry 31 (1992) 5253–5263.
- [31] G.W. Vuister, A. Bax, Resolution enhancement and spectral editing of uniformly ¹³C-enriched proteins by homonuclear broadband ¹³C decoupling, J. Magn. Reson. 98 (1992) 428–435.
- [32] K. Pervushin, B. Vögeli, Observation of individual transitions in magnetically equivalent spin systems, J. Am. Chem. Soc. 125 (2003) 9566–9767.
 [33] D.M. Korzhnev, K. Kloiber, V. Kanelis, V. Tugarinov, L.E. Kay, Probing slow dynamics
- [33] D.M. Korzhnev, K. Kloiber, V. Kanelis, V. Tugarinov, L.E. Kay, Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme, J. Am. Chem. Soc. 126 (2004) 3964–3973.
 [34] A.J. Shaka, J. Keeler, T. Frenkiel, R. Freeman, An improved sequence for
- [34] A.J. Shaka, J. Keeler, I. Frenklei, K. Freeman, An Improved sequence for broadband decoupling: WALTZ-16, J. Magn. Reson. 52 (1983) 335–338.
- [35] D. Marion, M. Ikura, R. Tschudin, A. Bax, Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins, J. Magn. Reson. 85 (1989) 393–399.